学术报告通知
报告题目:General draw-down times for spectrally negative Levy processes
报告人:周晓文 加拿大康科迪亚大学数学与统计系终身教授
报告时间:2019年12月13 日16:00-17:00
报告地点:44118太阳成城集团307
数学与统计学院
2019.12.12
报告摘要:The draw-down time for a stochastic process is a downward first passage time that depends on the previous running maximum. It generalizes the ruin time for risk processes in a natural way, and can serve as an effective tool to study the relative downward fluctuation of the process. For spectrally negative Levy processes, we prove several results involving general draw-down times from the running maximum. In particular, we find expressions of the Laplace transforms for the two-sided exit problems involving the draw-down time. We also obtain fluctuation results for draw-down reflected spectrally negative Levy processes. The results are expressed in terms of scale functions.
报告人简介:周晓文,加拿大康科迪亚大学数学与统计系终身教授, 于1988年及1991年在中山大学获得本科及硕士学位,1999年在美国加州大学Berkeley分校获统计学博士学位。长期从事概率论与随机过程理论的研究。主要研究兴趣包括测度值随机过程,Levy过程及其应用,随机偏微分方程以及连续状态分枝过程。在Annals of Probability,Probability Theory & Related Fields,Stochastic Processes & Their Applications,Journal of Applied Probability,Journal of Differential Equations,Insurance Mathematics & Economics,Electronic Journal of Probability等概率论领域著名期刊上发表论文60多篇。