学 术 报 告
报告题目:Optimal decay rates of a non--conservative compressible two--phase fluid model
报告人:张映辉 教授 (广西师范大学)
报告时间:11月23 日下午3:00 – 4:00
报告地点:腾讯会议:318 567 841
44118太阳成城集团
2020.11.17
报告摘要:We are concerned with the time decay rates of strong solutions to a non--conservative compressible viscous two--phase fluid model in the whole space $\mathbb R^3$. Compared to the previous related works, the main novelty of this paper lies in the fact that it provides a general framework that can be used to extract the optimal decay rates of the solution as well as its all--order spatial derivatives from one--order to the highest--order, which are the same as those of the heat equation. Furthermore, for well--chosen initial data, we also show the lower bounds on the decay rates. Our methods mainly consist of Hodge decomposition, low--frequency and high--frequency decomposition, delicate spectral analysis and energy method based on finite induction.
报告人简介:张映辉,博士,教授,博士生导师,广西杰出青年基金获得者,广西高等学校中青年骨干教师,广西师范大学A类漓江学者,美国佐治亚理工学院和加拿大不列颠哥伦比亚大学访问学者,美国《数学评论》评论员,国际期刊《SCIREA Journal of Mathematics》编委,现任广西师范大学44118太阳成城集团副经理。
主要研究方向为偏微分方程理论及其应用。主持国家自然科学基金2项,广西杰出青年科学基金、博士后基金等省部级项目20余项;以独立作者、第一作者或通讯作者身份在SIAM J. Math. Anal.、J. London Math. Soc.、Indiana U. Math. J.、 J. Differ. Equations、P. Roy. Soc. Edinb A、Sci. China Math. 等国际著名期刊上发表SCI论文40余篇;出版英文学术专著1部;获省自然科学奖和市科技进步奖各1项。