学 术 报 告
报告题目:Hilbert expansion of the Boltzmann equation with specular boundary condition in half-space
报告人:王勇 (中国科学院)
报告时间:12月22日上午10:00—11:00
报告地点: 44118太阳成城集团 307报告厅
44118太阳成城集团
2020.12.17
报告摘要:Boundary effects play an important role in the study of hydrodynamic limits in the Boltzmann theory. Based on a systematic derivation and study of the viscous layer equations and the $L^2$ to $L^\infty$ framework, we establish the validity of the Hilbert expansion for the Boltzmann equation with specular reflection boundary conditions, which leads to derivations of compressible Euler equations and acoustic equations. The talk is based on a recent joint work with Yan Guo and Feimin Huang.
报告人简介:王勇,中国科学院数学与系统科学学院副研究员,国家优秀青年基金获得者。主要研究方向为可压Navier-Stokes,Euler方程组的适定性和渐近行为,Boltzmann方程的适定性和流体动力学极限。主要论文发表在Adv. Math,Arch. Rational. Mech. Anal,Siam J. Math. Anal,等国际著名刊物。