张晓龙

发布人:日期:2024年03月01日 17:00浏览数:


张晓龙,男,博士,副教授,硕士生导师。

教育背景:

2013.09-2019.06   大连理工大学  计算数学  博士(硕博连读)

2017.01-2018.07   密歇根大学  计算数学  联合培养博士(导师:John P. Boyd

工作经历:

2020.01-2022.12     大阳城集团娱乐平台                 44118太阳成城集团     讲师

2022.03-2024.03     新加坡南洋理工大学     博士后(导师:Lilian Wang教授)

2023.01-至今          大阳城集团娱乐平台                 44118太阳成城集团     副教授

教学育人:

承担本科生课程《微分方程数值解法》《数据库原理》,研究生课程《高等数值分析》。

科学研究:

研究领域:谱方法、函数数值逼近、微分方程数值解法

代表论文:

[1]  X. ZHANG and L.-L. Wang, "Low regularity estimates of the Lie-Totter time-splitting Fourier spectral method for the logarithmic Schrödinger equation," arXiv, vol. 2401.02288, pp. 1-26, 2024.

[2]  L.-L. Wang, J. Yan and X. ZHANG, "Error analysis of a first-order IMEX scheme for the logarithmic Schrödinger equation," SIAM J. Numer. Anal., vol. 62, no. 1, pp. 119-137, 2024.

[3]  X. ZHANG, L.-L. Wang and H. Jia, "Error analysis of Fourier-Legendre and Fourier-Hermite spectral-Galerkin methods for the Vlasov-Poisson system," ESAIM: Math. Model. Numer. Anal., vol. 57, no. 6, pp. 3637--3668, 2023.

[4]  X. ZHANG and J. P. Boyd, "Asymptotic coefficients and errors for Chebyshev polynomial approximations with weak endpoint singularities: Effects of different bases," Sci China Math., vol. 66, pp. 191–220, 2023.

[5]  X. ZHANG, "Comparisons of best approximations with Chebyshev expansions for functions with logarithmic endpoint singularities," Numer. Algorithms, vol. 94, pp. 1355–1379, 2023.

[6]  X. ZHANG and J. P. Boyd, "Exact solutions to a nonlinear partial differential equation: the Product-of-Curvatures Poisson," J. Comput. Appl. Math. Vol. 406, no.1, p.113866, 2022.

[7]  X. ZHANG and J. P. Boyd, "Optimal truncations for multivariate Fourier and Chebyshev series: Mysteries of the hyperbolic cross: Part I: Bivariate case," J. Sci. Comput., vol.82, no.2, p.34, 2020.

[8]  X. ZHANG and J. P. Boyd, "Revisiting the Thomas–Fermi equation: Accelerating rational Chebyshev series through coordinate transformations," Appl. Numer. Math.,vol.135, pp. 186-205, 2019.

注:每年招收2名研究生,欢迎对函数数值逼近和微分方程数值解法感兴趣的员工报考。

联系方式:xlzhang@hunnu.edu.cn

上一条:袁永军

下一条:张玉红

【关闭】 打印    收藏